Hardware

Omni-Tech H3222 Computer (2003)

Omni-Tech H3222 Computer (2003)

side panel removed

Power Supply

Power Supply Connectors

If the plug fits, then it's safe to use and will work.

Optical Drive

BluRay, DVD, and CD drives are all <u>backward</u> compatible for disks – BluRay drives can read BluRay, DVD and CD disks. DVD drives can read DVD and CD disks.

Optical drive partially disassembled

Optical drive, disassembled with tray out

Optical Drive Laser Pickup Carriage

Optical Drive Controller

Internal Hard Drive

Hard Drive disassembled

Showing the rotating disk, and the moving Read / Write Head.

Hard Disk Drive Controller

All four disk drives

including the now obsolete floppy drive and Zip Drive

Disk Drive Connectors

Notice that the bottom three are all the same – they are completely compatible.

Isolation of complexity – to the rest of the computer, all three are exactly the same.

The Controller circuit boards on the bottom of each drive handle the differences.

The engineers will keep newer drives compatible with older drives if they possibly can, both technically and economically.

Solid State Drive

Completely compatible with Hard Disk Drives and Optical Drives, but made with solid state flash memory. Faster, more dependable, less power consumption, but more expensive than hard drives. Only memory used in modern thin notebooks, all tablets, and cell phones.

Solid State Drive

Interior of older SSD drives with compatible connectors to Hard Disk Drives. Desktop and notebook versions, essentially the same except for packaging and connections.

Thumb Drives use a completely different connection

However, from a <u>user's</u> perspective, all drives are same. Isolation of complexity, this time not with hardware compatibility, but with software (the Windows or Mac OS operating system).

Ribbon Cable

Connected to the Hard Drive and Optical Drive If the connector fits, then most of the time the equipment will work.

Ribbon Cable

showing motherboard connector

Motherboard

with all removable components attached

Motherboard with Video Graphics Card removed

Video Graphics Card

Motherboard with Random Access Memory removed

also Video Graphics Card

Random Access Memory (RAM)

front and back views

Motherboard with Central Processing Unit (CPU) removed

also Random Access Memory and Video Graphics Card

The CPU is still attached to its Heat Sink.

CPU Heat Sink

Fan on top, with power cord.

CPU (Pentium 4) with Heat Sink on top

Pentium 4 CPU without heat sink

Тор

Pentium 4 CPU

Bottom

Pentium 4 with outer metal case removed

Inner plastic case exposed

Pentium 4 with actual chip exposed

Pentium 4, B&W picture of circuitry on chip

The red box in the lower left surrounds the Cache Memory.

Storage and Memory Access Times

Cloud Storage, on the Internet Hard Disk Drives and Optical Drives Flash Memory Random Access Memory (RAM) Cache Memory on CPU chip

fraction of a second	0.x	seconds
single milliseconds	0.00x	seconds
tens of microseconds	0.0000x	seconds
about 100 nanoseconds	0.0000001	seconds
fraction of a nanosecond	0.00000000x	seconds
(same speed as CPU)		

Storage and Memory Costs

Cloud Storage on the Internetfree to the user with adverOptical Drives\$0.10 per writable diskHard Disk Drives\$100 per terabyteFlash Memory\$40 for 64 megabytesRandom Access Memory (RAM)\$20 per gigabyteCache Memory on CPU chip(included in CPU, but very sector)

free to the user with advertising (based on Hard Drives)\$0.10 per writable disk0.01 cents per Megabyte

10 cents per Megabyte

60 cents per Megabyte

2 cents per Megabyte

(included in CPU, but very expensive to manufacture per byte)

Storage and Memory Characteristics

Type of memory	Speed	Persistence	Capacity	Portability	Cost
Cloud Storage	very slow	non-volatile	large	easily transported	cheap or free
Hard Disk Drive	slow	non-volatile	very large	rarely transported	cheap
Optical Drive	slow	non-volatile	low per disk	easily transported	moderate
Flash Memory	moderate	non-volatile	moderate	easily transported	moderate
RAM	fast	volatile	low	none	moderate
Cache	extremely fast (CPU speed)	volatile	extremely low	none	very expensive

Motherboard with North Bridge Heat Sink removed

also CPU and its Heat Sink, Random Access Memory, and Video Graphics Card

North Bridge Heat Sink

top

North Bridge Heat Sink

bottom

North Bridge Chip

soldered to the motherboard, with bus to CPU (left), bus to Video Graphics Card connector (right), and bus to Random Access Memory (top)

South Bridge Chip

soldered to the motherboard,

controls the slower input / output, including disks, expansion slots, external connections, and the BIOS (Basic Input / Output System)

Bare Motherboard

all detachable components removed

Motherboard with labels, components restored

Motherboard Underside

Bus between CPU (in center) and North Bridge chip (on right)

The Nanosecond

- Electricity in a bare wire goes almost the speed of light.
- Speed of light: about 186,000 miles per second
- 186,000 * 5,280 = 982,080,000 feet per second
- Electricity travels about 1 billion feet per second
- Nanosecond: a billionth of a second
- Electricity travels about 1 foot per nanosecond

The Nanosecond

- Clock: currently about 2 GigaHertz
 2 billion pulses per second
- Each pulse is about 1 / 2 nanosecond
- 1/2 times 1 foot equals 6 inches
- Electricity travels through a wire: about 6 inches per clock pulse
- Much of each clock pulse is "stabilization time", the time it takes for the electricity to stabilize at a useable value.

The Nanosecond

- The moral:
 - The "fast" components on a motherboard must be small and close together.

Original IBM PC Motherboard

Original IBM PC Motherboard

Motherboard external Input/Output (I/O) connectors

Video Graphics Card with labels

It is a computer in itself, with the same basic components of the motherboard, specialized for graphics output .

Empty Case

Video Graphics Card with choice of 3 connectors

VGA on left, S-Video in center, DVI on right VGA: Video Graphics Array, 1980's to present, from computer technology S-Video, Super-Video, 1980's to present, from television technology DVI – Digital Video Interface, 1999 to present, backwards compatible

Video Graphics Card

Audio Card

5. 1 Audio Output

Audio Card

Notice CD input at top, for the sound cable from the Optical Disk Drive

Network Card

Ethernet

Network Card

wired Ethernet connector

Modem Card

for land line telephone connection

Modem Card

for land line telephone connection

USB Expansion Card

adds two Universal Serial Bus connections that have direct access to the motherboard input / output bus

USB Expansion Card

End of Presentation